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Abstract—There is a global increase in demand for steel, but 

steel manufacturing is a highly sophisticated and costly process 

where good quality is hard to achieve. Improving the quality 

remains a major challenge faced by the steel industry. The EU 

project PRESED (Predictive Sensor Data mining for Product 

Quality Improvement) addresses this challenge by focusing on 

widespread recurring problems. The variety and veracity of data, 

as well as the change in properties of the observed material 

complicates the interpretation of data. In this paper, we present 

the reference architecture of PRESED, which is being purpose-

built to address the vital concerns of managing and 

operationalizing the data. The architecture leverages big and 

smart data concepts with data mining algorithms. Data 

preprocessing and predictive analytics tasks are supported by 

means of a malleable data model. The approach allows to design 

processes and evaluate multiple algorithms pertinent to the 

problem at hand. The concept is to store and harness the complete 

production data instead of relying on aggregated values. Early 

results on data modeling show that fine grained preprocessing of 

time series data through feature extraction and predictions 

provide superior insights than traditionally used aggregation 

statistics. 

Keywords—process optimization; steel manufacturing; data 

mining; time series; nosql 

I.  INTRODUCTION 

European steel industry is facing extremely challenging 
global markets with very strong international competition. It is a 
fact that costs for manpower, raw materials and energy are 
significantly lower in other regions of the world like China, India 
or Brazil. It is therefore indispensable for Europe to exploit its 
current production facilities in a much smarter way to keep its 

competitive edge. Therefore, novel methods to improve the 
manufacturing of steel products are essential for market success. 

Steel production is a complex process comprising different 
steps. Each of these steps has to be very precisely mastered in 
terms of process conditions (temperature, casting speed, cooling 
flow rate, etc.), as slight deviations can lead to the occurrence of 
defects on the product. Mostly, physical understanding enables 
to target the origin of the problem. But in situations where a clear 
understanding is not available, data mining is a key technology 
for addressing and understanding the origin of the problem. Due 
to the complexity of the underlying processes and the data, in 
particular material tracking over the complete production cycle, 
sophisticated tools have to be developed.

In this work, we present a conceptual architecture for storing 
and processing the massive amount of sensor data that are 
created during steel manufacturing. We aim to build a reference 
model that is able to take advantage of new data storage methods 
(e.g., NoSQL) and allows the usage of predictive analytic 
methods on the stored data. 

The layout of this paper is as follows. In Section II, we 
outline the state of the art for quality management and predictive 
analytics. An overview of current big data technologies and their 
relevance to the PRESED project is also presented. In Section 
III, we give an overview of the manufacturing process in steel 
plants. Section IV presents the PRESED architecture defined by 
the PRESED project, its data model, a summary of applicable 
algorithms and the embedded ontology design. We conclude the 
paper in Section V and highlight future directions. 
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II. RELATED WORK 

In the past, data mining helped to perform quality 
surveillance for industrial processes [1] and was used along the 
production route of steel [2], often with a focus on surface 
quality [3] or root cause analysis [4]. These tools evaluated 
several relevant but static quantities to find the root causes of 
certain production issues. These approaches were limited to a 
small subset of information about the product, simply because 
the amount of available data was too large and several 
aggregations were applied before the actual mining took place. 
Another work that applied data mining to the steel industry is 
presented in [5]. 

The presented architecture approaches data mining on 
sensorial time series data. This emphasis on uncompressed data 
differs significantly from traditional methods as it requires a 
thorough analysis of the time series. Storing the data in a 
relatively unprocessed state and applying data analytical 
processes is a common paradigm for big data architectures, e.g., 
the Lambda Architecture by Nathan Marz [10], which targets 
key-value paired data. 

In contrast to the referred works, the novelty of our work lies 
in product-orientation. To efficiently store information 
belonging to a product, each product – in the following called a 
metal unit - has a virtual representation in a NoSQL database. 
The metal unit can be a heat, a slab or a coil, depending on the 
physical state of the product. Adopting such a view is new to 
steel industry and was not used in previous works. We decided 
to use a NoSQL database for storing the metal unit, as it does not 
depend on a fixed uniform data schema, but other storage 
models are also possible. 

Also, a series of dedicated algorithms have been developed 
for the PRESED project, that significantly extend the common 
state of the art in the field of predictive data mining. Among 
them are outlier detection, Self-Organizing Maps and Deep 
Learning methods that were trained with data from the use cases. 
Synergies were found between the product-oriented data 
concept and the machine learning algorithms, as the new data 
concepts allowed an easy and flexible storage of multiple labels 
per product. 

III. DOMAIN OF STEEL MANUFACTURING 

Manufacturing steel is a time-sensitive and multi-step 
process as illustrated in Fig. 1. A typical process flow to produce 
steel for flat products (sheet) involves the following steps: 

 Iron making, where liquid iron is produced either from 

iron ore (blast furnace) or from scraps (electric arc furnace) 

 Steel making, where the chemistry of the liquid metal is 

progressively adjusted through several reactors in order to 

reach the expected target. 

 Continuous casting, where the liquid steel solidifies into 

one slab – a piece of solid steel. 

 The slab is then re-heated and hot-rolled to have a first 

length adjustment and produce what is called a “coil”. For 

flat products, the length of a slab is typically 20 meters, 

whereas the length of a coil can reach several hundreds of 

meters. 

 Another step is cold-rolling for further elongation of the 

coil. Depending on the target thickness, the final length can 

reach several kilometers. 

 Annealing and galvanizing: a thermal cycle is applied on 

the steel to adjust its mechanical properties before a zinc 

coating is applied against corrosion. 

A. Use cases 

For developing the PRESED architecture and validating our 
approach, the following use cases are considered: 

(1) Predict Sliver Occurrence: Slivers are one of the major 
sources of quality loss on the steel surface. The defect 
occurs at the continuous casting step, when slight 
amount of slag (various liquid oxides remaining on the 
top of the continuous casting machine) are entrapped at 
the liquid steel surface during the solidification process. 
The occurrence of the defect is strongly impacted by the 

 
Figure 2: Architecture diagram depicting key concepts 

 
Figure 1: Stages in steel production 

 



 

 

liquid steel flow in the continuous casting machine, 
which is itself dependent in a very complex way from 
all process conditions (temperature, speed, continuous 
casting actuators, etc.). This is a major concern, because 
the defect is usually detected at the final step of the 
process, leading to very high re-allocation costs. 

(2) Scattering of Mechanical Properties (MP): MP are one 
of the most important product criteria for the customer. 
If the specifications are not reached, a lot of issues can 
be experienced by the steel customer, in particular for 
stamping operations. For certain steel grades, these 
mechanical properties are very sensitive to slight 
variations of temperature during the last annealing 
cycle. The thermal behavior of the steel in the last 
furnace is itself highly dependent on process parameters 
ranging from continuous casting to the galvanizing 
lines. A bad mastering of these parameters leads to 
scattering in mechanical properties, but the study of the 
phenomenon is very complex since data from all along 
the production chain has to be considered. 

(3) Production Process Chain: This use case aims at 
controlling the (non-Sliver related) surface defects and 
improving the inner quality of steel product by 
considering all phases of the production chain between 
electric furnace and continuous casting. 

IV. ARCHITECTURE 

The proposed architecture addresses various concerns for 

data storage, data mining, visualization and concept formalism. 

It is quite evident from previous sections that a singular 

software framework cannot address the diverse requirements 

for our use cases. Instead, we emphasize on an extensible 

approach which is capable of integrating the following 

technical requirements: 

 A generic malleable data model for preprocessing 

and enriching the raw sensor data. 

 Application of various algorithms to the problem 

at hand e.g., data transformation, feature 

extraction, outlier detection or classification. 

 Designing and executing data mining processes 

that encompass the above concerns in a visual and 

concomitant manner to support reuse and sharing. 

 

The PRESED architecture serves the needs of three major 

stakeholders: 1) The Data Engineers: They model the raw data 

into a generic model (Section A-1). This is a preparatory 

activity which may be done infrequently. 2) The Domain 

Experts: They author data mining processes on the now unified 

data model. 3) The Plant Operators and Managers: These 

actors execute the previously created processes to seek 

advanced insights on product quality and potential defects. The 

results are presented visually to assist human interpretation and 

enable timely corrective measures. 
At the high level, the design splits these concerns into three 

planes: a data layer, an analytics layer and a knowledge layer as 
shown in Fig. 2. The salient features of these layers along with 
the challenges faced are presented below in detail. 

A. Data Layer 

The data layer deals with the set of sensor readings from 
various stages of production e.g., continuous casting, hot or cold 
rolling, coiling and uncoiling of the metal unit. This ‘raw’ time 
series data is encapsulated in an object representing the metal 
unit and stored in a NoSQL database. Although the volume of 
data collected so far is not as extensive as in other big data 
projects, it is expected to grow in future. We selected MongoDB 
because of the simplicity it offers to store unstructured and 
sparse data as objects that can be efficiently retrieved. It further 
allows the user to update an object or entire collection of objects 
with new attributes as or when the need for data enrichment 
arises. This is well suited to industrial settings where sensor 
values become dynamically available and where readings 
corresponding to a certain stage of the production process need 
to be inspected. In so, the variety and veracity of the big data 
paradigm play a strong role in this work. 

 
Figure 4: Effect of coiling and de-coiling on length and observed position 

points 

 

 
 

Figure 3: The generic data model for the metal unit. 



 

 

 

1) Generic Data Model 

The structure of the metal unit (a coil or slab of steel or a 

heat) is composed as a generic data model as shown in Fig. 3. 

The unit is identified by its identifier and has aggregated nodes 

that hold data from its production process (casting, hot or cold 

rolling, etc.) or data derived through enrichment (depicted as 

green nodes). In general, data for each of these categories exist 

either as static variables which hold fixed univariate values or as 

dynamic variables which hold time series data. Additionally, 

information about the unit such as inspection data, cuts, 

parent/child units can also be linked through identifiers. 

The datasets being used are real data from steel plants in 

France and Italy. For the first two use cases, there exists data 

for 2261 coils, of which 1205 were labeled (or classified) as 

good and 1056 of bad quality. The data also includes 5000 

slabs, with casting speed, actuator position, mould level, argon 

gas flow and pressure values - collected during the continuous 

casting phase. Further, a set of 70 static and 125 dynamic 

variables are considered for data preparation. The data for the 

third use case treats a heat as a metal unit. It encompasses the 

process as steel goes from the electric furnace to the continuous 

casting phase. A heat in this context refers to the molten metal. 

The data include 10,000 heats collected over a 2-year time 

period. 

2) Achieving Smart Data through Enrichment 

Before applying a learning algorithm, the data needs to be 

pre-processed. Concerning time series data, the volume of data 

is not the only key factor. To deliver qualitative reliable 

information, additional enrichment techniques are required. 

The first steps are sanity checks such as the usage of consistent 

units, treating missing values and normalization of data ranges. 

The latter also serves to anonymize the possibly sensitive data 

when sharing them among project partners. The metal unit may 

change in length due to the milling or cutting of the product. 

Further, as a result of coiling and de-coiling, the head of the coil 

transforms to the tail point and vice-versa as shown in Fig. 4. 

For situations like these, where the geometry inside the metal 

unit changes, or wherever different sampling intervals are used 

for sensorial data acquisition at different stages, rescaling is 

done by interpolating all data with inferior sampling points onto 

the discretization of highest resolution. This preserves the 

information for the higher resolved data, which would be lost if 

down-sampling were to be performed. 

3) Systematic Process Design 

The next step is to systematically compose these repetitive 

operations as an executable data mining process. This activity 

is supported through the open-source and free-to-use 

RapidMiner [8] tool that allows to graphically create data 

mining processes. Processes resemble a pipeline composed of 

tasks that are wired together through drag and drop mechanism. 

Tasks may perform ETL (Extract, Transform and Load) or 

machine learning operations by invoking different algorithms 

and evaluating their performance. 

For instance, Fig. 5 illustrates how data enrichment is applied 

through transformation functions on the raw sensor values. 

First, the process reads data from the MongoDB instance and 

converts the JSON format into an in-memory representation. 

Next, feature extraction is performed by first applying an outlier 

detection algorithm and then filtering the data set based on the 

outlier score. Finally, a Python script is invoked to generate a 

visualization which shows the Fourier transformation of the 

impurity (mould) level, where 1000 slabs are shown - classified 

as having good or bad quality. 

Such transformation processes help to detect or highlight 

certain properties of signals e.g., calculating the derivation or 

applying a signal space transformation. Because of the 

malleable data schema, it is possible to pre-calculate the 

transformation and append the results to an existing metal unit. 

Thus, even the results of computationally intensive 

transformations are available for reuse. Complex processes for 

predictive analytics are designed and applied in the same way. 

B. Analytics Layer 

The analytics layer caters for the management and 

execution of data mining processes. This layer centers around 

the Analytics Server which provides: 1) A repository for storing 

RapidMiner processes. This eases collaboration by providing 

shared access. 2) An execution core to execute processes upon 

demand. 3) A dashboard view that allows to browse the data 

and display execution results as charts (using Python and/or 

JavaScript libraries). These visualizations can be customized 

through query parameters because the Analytics Server exposes 

processes as REST-full web services. The latter paves the way 

for interoperability with legacy systems and operationalizing on 

predictions. 

 

 

 

 
Figure 5: RapidMiner process reading data from MongoDB and performing pre-processing steps before applying a Python script for advanced visualization 

(left). Fourier transformation of the mould level. Overlay of 1000 slabs, divided into good (green) and bad (red) label classes (right) 



 

 

1) Feature Extraction 

When dealing with multivariate time series, it is essential to 

extract the most relevant features. The information contained in 

the dynamic aspects of sensor data (temporal evolution of the 

measurements) faces specific issues, which are: 

 The relevant temporal information is typically 

encoded in many complex ways such as segments, 

spikes, periodicity, drifts or often a combination of 

these. The relevant information can be the whole 

signal or only a sub-sequence. 

 In an industrial context, the time series are usually 

multivariate: dozens of sensors measure process 

parameters at the same time or at the same positions of 

the product. 

 Time series are particularly prone to noise: the typical 

measurement noise and process variability are 

duplicated by the successive observations. Time series 

also suffer from the time-axis noise named time 

warping: the same phenomenon can occur at several 

speeds and also suffers from local misalignment. 

 When comparing time series, the high dimensionality 

is a prominent issue as the number of measurements is 

usually very large – this is often referred in 

mathematics as the “curse of dimensionality” [9]. 

Those problems are not restricted to the use cases discussed 

here and there are existing solutions, e.g., low-pass filters, 

dynamic time warping, dimensionality reduction algorithms. 

These solutions are incorporated into the data enrichment 

process. 

 In interaction with process experts, a supervised temporal 

pattern discovery approach based on the shapelet concept [12] 

was developed (Fig. 6). The objective was to discover localized 

discriminant sub-sequences in the time series. The search is 

driven by the product quality information. In [11], the 

scalability issue of the discovery process was addressed in order 

to apply the method on large datasets. Furthermore, a 

generalization of the shapelet concept was developed to 

efficiently discover diverse shapelets with respect to the whole 

context. 

 

2) Outlier Detection 

Detecting deviant observations can help to identify possible 

problems in the production during an early stage. The main idea 

of the proposed outlier detection algorithm ensemble is to 

combine different approaches (density, clustering, distribution 

and distance) by means of a fuzzy inference system (Fig. 7). 

Due to the automatic computation of all the parameters needed 

to execute the elaboration of the algorithm, no a-priori 

knowledge is required. The fuzzy inference system is further 

described in [6]. 

 

3) Predictive Models 

Another aspect addressed in PRESED regards the predictive 

modeling for process control. For instance, the third use case 

applies an unsupervised learning approach to detect anomalous 

behavior of one or more continuous casting process variables. 
 

Figure 7: Outlier detection algorithm 

 

 
Figure 6: An example of temporal pattern discovery using the shapelet 

algorithm. 

 

 
Figure 8: SOM hits plot with trajectory 



 

 

This has been achieved by means of a SOM (Self Organizing 

Map) [7]. 

The cause of defected heats might be the sudden changes in 

values of specific process variables. This phenomenon can be 

visualized by looking at a customized SOM hits plot, by adding 

trajectories of the activated neurons to the net (Fig. 8). 

 

C. Knowledge Layer 

The objective of the Knowledge Layer is to facilitate an 

exchange between process experts and data mining experts. To 

do so, concepts relative to steel manufacturing are modeled 

together with concepts relative to data processing, as seen in 

Fig. 9. These are formalized in an ontology (using the OWL1 

language) that contains concepts, instances and rules. The list 

of concepts combines a list of common defects and physical 

concepts, characterizing a metal product (such as density or 

crystal structure). Rules (described using the SWRL2 language) 

link a defect to its effect to the final product. 

To exploit this ontology, a web portal is developed based on 

the KASEM [13] software. The portal allows to query the 

knowledge stored inside the ontology. The objective is to 

enable process experts to find a suitable algorithm for a given 

problem scenario. Using theoretical knowledge combined with 

the results from experiences of previous cases, the software can 

advise the best data processing algorithm(s) for this specific 

problem. The high-level model in the ontology also allows this 

application to be generalized in a fleet-wide approach. It is thus 

possible to access knowledge gained in another plant for similar 

situations and have more precise suggestions at hand [14]. For 

example, a query can show the used data enrichment processes 

or the applied algorithms and their parameters for a new, but 

similar metallurgical problem. 

V. CONCLUSION AND FUTURE WORK 

 Improving the quality of steel production processes has been 
a long-term goal for the industry. The PRESED architecture 
addresses these goals by leveraging big and smart data 
technologies with data processing and mining techniques. The 
on-going progress on use cases is expected to lead to novel 
results which may serve as a niche for the steel industry in 
improving the product quality as well as optimizing the whole 
production processes. Future extensions and improvements are 
planned especially regarding operationalizing of results in real 
plants. We also plan to curate the process web services to form 
a unified API for broader adoption of PRESED architecture. 
Finally, a link between KASEM and RapidMiner will be 
investigated to use the knowledge stored in the ontology for 
context-driven algorithm instantiations. 
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Figure 9: Modeling of steel and data processing concepts inside an ontology 


