

Overview of Ariadne Project

RapidMiner Research

Presentation Layout

- Introduction to ARIADNE (an EU-H2020 5G-PPP project)
 - Partners
 - Vision Statement
 - RoadMap
 - List of Use Cases
- AI/ML Application Areas in ARIADNE
- Categories of AI/ML Application Areas
- Transferring Ariadne Experience to RapidMiner

@ARIADNE

Coordinator

Dr. Halid Hrasnica Eurescom, Heidelberg, Germany

Scientific and Technical Project Manager

Prof. Dr. Angeliki Alexiou University of Piraeus Research Centre, Athens, Greece

Website: https://www.ict-ariadne.eu

Twitter: @Ariadnelct

Email: contact@ict-ariadne.eu

ARIADNE – Vision Statement

Artificial Intelligence **A**ided **D**-band **N**etwork for 5G Long Term **E**volution is a H2020 5G PPP project which aims to bring together **a novel high frequency radio architecture**, an advanced wireless **connectivity based on reconfigurable metasurfaces**, and an **enhanced network management supported by AI** to establish a new type of **intelligent communications system beyond 5G**.

RoadMap: From Objectives to Actions

Pillars	Objectives	Actions	Demos	Main KPIs
D-band for 100 Gbit/s reliable wireless connectivity	100 Gbit/s capable, energy and spectral-efficient D-Band wireless B5G networks	D-band front-end Baseband DSP Adaptive spatial SP High gain D-band antennas Channel modelling	P2P D-band LOS outdoor demo	100 Gbps throughput 100m range Massive number of devices Zero latency Ultra-high reliability
Communications beyond the Shannon paradigm	Ultra-reliable D-band connectivity and reconfigurability in all usage environments	Reconfigurable adaptive metasurface design Beamforming for LOS and NLOS links MAC design	Metasurface-based D-band demo	
Artificial Intelligence- based wireless system concept	Transform networks B5G into intelligent connectivity/computing platforms	• ML for channel modelling • ML-based resource allocation and energy efficiency ML for network deployment optimization	Intelligent D-band Network Demo	

List of Use Cases

- Use case 1: Outdoor backhaul/fronthaul networks of fixed topology
 - Scenario 1: Long-range Line of Sight (LOS) rooftop point-to-point backhauling.
 - Scenario 2: Street-level point-to-point and point-to-multipoint backhauling/fronthauling.
- Use case 2: Advanced NLOS connectivity based on metasurfaces
 - Scenario 1: Indoor advanced Non-Line of Sight (NLOS) connectivity based on metasurfaces
 - Scenario 2: Data kiosk
- Use case 3: Adhoc connectivity in moving network topology
 - Scenario 1: Dynamic front/backhaul connectivity for mobile 5G access nodes and repeaters
 - Scenario 2: V2V and V2X connectivity

AI/ML Application Areas

Where do we apply AI/ML?

Channel modeling

- Estimating parameters of the channels
- Profiling adverse effect of weather on channels

Beamforming

- Assigning beams to users
- Ray tracing (follow a mobile node) for pencil beams
- Model behavior of RIS (Reconfigurable Intelligent Surface that uses Metasurface) for indoor and outdoor settings
- Dynamically creating beams in Non-Line of Sight (NLOS) scenarios

Network optimization

- Resource allocation and Scheduling in Line of Sight (LOS) scenarios to maximize aggregate data-rate & save energy)
- Route finding in NLOS scenarios to maximize reliability of multiple links
- Placement of radio network components to maximize coverage and signal strength using minimal base stations
- Performing offline and online optimizations (for dynamic cases)
- Optimize network load by diverting traffic to NLOS connections using RIS models.

Categories of AI/ML Methods

Predictive Analytics

Forecasting

- Demand for connections or data transmission rates at different time periods
- Demand for energy consumption in the network

Predicting

- Bottlenecks at different nodes and congestion in the network
- Properties of a link: blockages, reliability, failure rate, service degradation (e.g., in terms of packet loss, effective radius, etc.)
- Estimated parameters of a multi-path channel.
- Attenuation level in signal quality due to weather affects.
- Machine failures before they happen, to proactively prevent failure and save repair costs.
- Movement (e.g. direction, angle) of user or mobile node

Detecting

Anomalous traffic flows

Categories of AI/ML Methods

Prescriptive Analytics

- What-If Analysis to derive insights
 - Interact with a predictive model to understand behavior of complex systems (such as a RIS or Metasurface)
 - Exploit predictive model by optimizing predictions for desired outcomes by injecting business constraints
 - Get optimal inputs (generate recipe)

Predictive Optimizations

- Resource allocation / Route scheduling
 - Include predictions from ML models within fitness function to get superior solutions
 - Include RIS as part of network
- Dynamic environments: Real-time planning and optimization
 - Stochastic and non-stochastic variants.

Transferring Ariadne Experience to RapidMiner

- Generating and Preparing Simulation Data
 - For various use case scenarios
- Future Work / Work in Progress
 - Library
 - Of customizable Optimization Problems and Solutions
 - RapidMiner Extension
 - Constraint solving optimization being developed in Ariadne for Telco (5G, Beyond5G, 6G) domains
 - Predictive and Prescriptive analytics functions
 - Web Demonstrator
 - To showcase offline and online optimization scenarios and solutions

THANK YOU VERY MUCH PLEASE ALSO WATCH USE-CASE PRESENTATIONS

rapidminer

#1 Agile Predictive Analytics Platform

Dr. Edwin Yaqub
Senior Data Scientist
eyaqub@rapidminer.com

Ralf Klinkenberg
Founder & Head of Data Science Research

rklinkenberg@rapidminer.com

@RalfKlinkenberg

© 2020 RapidMiner. All rights reserved.