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Project Overview

* Graphically design data processing workflows and data
analytics tasks with minimal or no programming overhead

* Real-time, interactive machine learning and data mining
tools

e Distributed Complex Event Forecasting
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Life Sciences Use Case

Studying the effect of drug synergiesin cancer
from in-silico simulations to in-vivo experiments and back

* Challenges:
 Huge CPU, memory requirements + output data to be processed
 Too manysimulations, too few promising ones
* Train a ML model to classify promising simulations and kill non-promising ones
* Learn which genes drive evolution of other genes and which to monitor
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Financial Use Case

Predicting Price Swings, SystemicRisk and
Forecasting Investment Opportunities
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Goal: Train ML models that extract valid rules used to perform:
* Real-time suggestion and forecast of investment opportunities
» Systemicrisk (i.e., great linkage between major market participants)
prediction
* Forecast price swings
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Maritime Use Case

Maritime Situational Awareness (MSA),
Monitoring Ship Movement and Detecting lllegal
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Challenges: Global

* Large amount of ships to monitor

* Many different data sources are
available

 Complex event classification
(patterns of movement or other
behavior)

Spatial coverage
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Graphical Data Analytic Workflows
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Graphical Editor
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e Simply design Streaming Analytics Workflows
 Upon execution one job is created and deployed

to the connected streaming cluster
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Inner Workings
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Capabilities

e Supported Clusters:
e Apache Flink
e Apache Spark (structured) Streaming

e Available Operations
e Streaming analytics operations
e Synopsis Data Engine

e Custom Online Machine Learning engines (running on Flink
and AKKA)

. Connections to financial service providers
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e Code-Free development
e Platform and back-end independent
e Pluggable connection management

e Easy to share and collaborate
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Link to Demo Video

https://youtu.be/9SKcM70Bi2U
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Location /Local Repository
Connections are now repository items.

Description This is an Apache Flink connection
You can enter a short description for this connection

here.
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The root operator which is the outer most operator of
every process.
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Each process must contain exactly one operator of this
class, and it must be the root operator of the process. This
operator provides a set of parameters that are of global
relevance to the process like logging and initialization
parameters of the random number generator.

Parameters
logverbosity (optional)
Log verbosity level.

Type: select
Range: all, io, status, init, notes, warning, error, fatal,
e
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https://youtu.be/9SKcM70Bi2U

Cross-Platform Optimization
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Optimizer Component

¢ In a multi-cluster set-up the optimal stream execution
can depend on
e Available resources per cluster
e Datalocation
e Software performance and implementation details

e An optimized process layout can greatly enhance the
performance
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Streaming Optimization Operator
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Optimizer Response

opti

Retrieve Kafka Conn... Multiphy
out inp out
c #£- _
Kafka Sink
out
{| con
a .
Kafka Source Filter Stream Aggregate Stream ‘ b
1, con g out inp WP out inp .Q.’ out
"platformName™: "flink" i
\ P Join Streams Write to the
- " output topic
5 . . inp ol
“siteName": "flink barcelona 1" Receive Input Filter Data Items o > Perfor.m an
Data Stream 1 aggregation (e.g.
dveldge) ull e
joined stream
Kafka Source (2) Map Stream
- ? ” - o ” str ogether
. [ ]
: "Map Stream" Split connection Split connection
3 . . .
"platformName”: "spark” (proceSS ﬂOW Receive Input Map a key in the (Streamlng Gl’aph)
S Data Stream 2 streamtoa
1, ContrOI) specific value

"siteName”: "spark_barcelona 1"
1
1,

"workflowName”: "Streaming”

- IN OR Interactive Extreme-Scale . e
N F E, PN AT Nl h e e @ Craphical Data Workflows and Cross-Platform Optimization



Streaming Optimization Operator
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Optimized Workflow
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Optimized Workflow

Muttiply (2)

Execution on the
Flink Cluster

4

p e

Execution on the

Split connection  ~spark cluster
(process rovxi
control)

Multiply Kafka Sink (2)

con g

= & ) Kafka Sink o n —

\ ) ) _J
out A
e e in
aut g
Kafka Source Filter Stream Aggregate Stream C " I it for the
Kafka Source (2) Map Stream nput for

. ‘
\ con §g out p P o B oo out | . A
t .
‘1 F ﬁ F Join Streams Write to the o & o ’) ﬁ " ': o F Clustergxecution

output topic

streams together

]
pin - Receive Input Filter Data Items. o o Perform an ™
inp .
batastream 1 Zﬁﬁf:::\‘;i' Receive Input Map a key in the u
]
. Data Stream 2 streamtoa
Join both data joined stream " | ™
Kafka Source (3) specific value ™
]
]

Output from
treaming (Spark
|uster

Split connection (Streaming Graph)

I N FO RE Interactive Extreme-Scale . e
PN AT Nl B e sl Craphical Data Workflows and Cross-Platform Optimization




Conclusion

- What we have seen:
. Project use cases and goals
. Graphical editor
. Cross-Platform optimization

. What's next:
. Job and Data Monitoring
. Better integration of HPC systems
. Refinements and deployment of the use cases
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http://www.infore-project.eu

CEG?

>

sprinqyrtechno
organization

M))) rapidminer

AE{J” IN OR Interactive Extreme-Scale . -
o F E, Analytics and Forecasting Graphical Data Workflows and Cross-Platform Optimization



http://www.infore-project.eu/

