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Big data technologies offer new opportunities for analyzing historical data generated 
by process plants. The development of new types of operator support systems (OSS) 
which help the plant operators during operations and in dealing with critical situ-
ations is one of these possibilities. The project FEE has the objective to develop such 
support functions based on big data analytics of historical plant data. In this contri-
bution, we share our first insights and lessons learned in the development of big data 
applications and outline the approaches and tools that we developed in the course 
of the project.
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Big Data Analytics zur proaktiven industriellen Entscheidungsunterstützung: 
Lösungsansätze und erste Erfahrungen des Projekts FEE

Big-Data-Technologien eröffnen neue Optionen zur Analyse historischer Anlagen-
daten in der Prozessindustrie. Eine Möglichkeit ist die Entwicklung neuer Operator-
Unterstützungssysteme (OSS), die dem Anlagenfahrer im Betrieb und bei der Be-
handlung kritischer Situationen assistieren. Das Projekt FEE hat das Ziel, derartige 
Unterstützungsfunktionen basierend auf Big Data Analytics unter Nutzung histori-
scher Anlagendaten zu entwickeln. In diesem Beitrag teilen wir erste Erfahrungen 
und Lessons Learned hinsichtlich der Entwicklung von Big-Data-Applikationen.
Weiterhin stellen wir im Projektentwickelte Lösungsansätze und Werkzeuge dar.

SCHLAGWÖRTER Big Data / Data Analytics / Entscheidungsunterstützung

Big data analytics for proactive 
industrial decision support
Approaches and first experiences in the FEE Project
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T
he high degree of automation in the pro-
cessing industries allows economical ope-
rations even in countries with high labour 
costs, such as Germany. However, it reduces 
the experience of the operators regarding 

the process dynamics. But know-how about the pro-
duction process is crucial, especially if the produc-
tion facility reaches an unexpected operation mode 
such as a critical situation. For example, such critical 
situations can lead to information overload (due to 
„alarm flood“), which can be overwhelming for the 
plant operator [1,2]. If control is lost it can result in 
serious damage to assets and costly downtime in the 
production process. Furthermore, this is not only 
expensive for the operating company but can also 
be a threat for humans and the environment. There-
fore, it is important to support the plant operator in 
a critical situation with an assistant system using 
real-time analytics and ad-hoc decision support. The 
analysis of the historical data collected in process 
plants is an opportunity to develop such operator 
support systems (OSS).

A typical process plant like a paper mill, a hot-
rolling mill or a petro-chemical plant, for example, 
generates a large amount of documentation and data 
throughout its entire life-cycle: I/O and tag lists, 
piping and instrumentation diagrams (P&ID), control 
logic, alarm configurations (during planning and 
commissioning), measurement values, alarm and 
event logs, shift books, laboratory results (during 
operation), maintenance notification, repair and ins-
pection reports (during maintenance).

Analytics are already performed today [1,2,3] to 
analyze and improve the operation of plants. How-
ever, this is usually limited to data from single data 
sources and does not consider tight semantic inte-
gration. In contrast, an integration of all different 
types of data within process plants leads directly 
into the area of the so-called big data [4]. For instance, 
a refinery produces more than 300 GB measured 
values per year, from more than 60,000 sensors with 
sampling intervals between 1 and 60 seconds. Data 

may be structured (sensor readings, database tables), 
semi-structured (alarm and event logs) or unstruc-
tured (shift books, operation manuals). Data is often 
stored for ten years or more. The availability of such 
historical plant data makes big data analytics and 
machine learning interesting, also in the process 
industries. Overall, this application domain features 
the notorious big data criteria: high volume, high 
velocity and high variety. The development of such 
operator support functionality is the aim of the FEE 
project (http://fee-projekt.de), which is described in 
the following section. 

1. THE FEE PROJECT
The objective of the BMBF-funded cooperative research 
project “Early detection and decision support for cri-
tical situations in production environments”(FEE) is 
the analysis of large and heterogeneous data volumes 
stored in petro-chemical production plants in a big 
data analytics platform with the aim of supporting 
plant operators. Big data technologies will enable data-
driven OSS to warn the operator at an early stage about 
unexpected and uncommon situations and support 
an ad-hoc analysis, as well as the development of 
intervention strategies. The main goal is to enable the 
operators to act proactively and to overcome today’s 
reactive fashion of operating chemical plants. An early 
detection of critical situations will permit plant ope-
rators to analyse the situation and carry out corrective 
actions before a problem or deviation results in a major 
problem. Online what-if simulation will give plant 
operators the opportunity to simulate consequences of 
intervention strategies. Online process analysis will 
provide plant operators with information about major 
process couplings, dominant time constants and pro-
cess gains. Together, these assistance functions will 
allow plant operators to develop a more appropriate 
response to process upsets.

The consortium of the FEE project includes appli-
cation partners from the chemical industry. They 
provide use cases for the project and background 
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knowledge about the production process which is 
important for designing analytical methods. The data 
enabling the use cases was collected in petrochemical 
plants over many years from a variety of sources. The 
heterogeneous data is consolidated and integrated by 
the big data analytics platform (see Figure 1).

Petro-chemical production plants (see Figure 2 for 
an illustration) have some specific requirements that 
are not common for most of today’s big data systems. 
First of all, such plants are safety-critical systems and 
consequently there are very important requirements 
regarding the reliability and clarity of operator’s aid 
or guidance. Furthermore the plants and the corre-
sponding process control systems are real-time sys-
tems with deterministic deadlines. Even if no hard 
deadlines will be applied for data analytics, the appli-
cability of the results will depend on their timely 
availability. Overall, the development of data-driven 
OSS has to account for both the specific requirements 
of the future users as well as the requirements arising 
from the technical environment. Existing reference 
models of data analytics or software development do 

not completely cover these tasks. 
As a consequence, even during the early phases 

of the project the project team identified a need for 
specific tools and methods tailored to the need of the 
application domain.

2. EXPERIENCE AND FIRST LESSONS LEARNED
In this section, we report about the first lessons lear-
ned during the execution of the FEE project regarding 
the organization of the development process, and we 
highlight the importance of data preprocessing and data 
exploration for successful project execution.

Multidisciplinary Development Process
The starting point for the development process applied 
in the FEE project was the well known CRISP-DM [5] 
process, a comprehensible reference process for data 
mining projects [6]. However, it turned out that such a 
data mining focussed process model is not sufficient and 
a multi-disciplinary approach will become necessary.
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FIGURE 1: �The big data analytics platform consolidates and integrates heterogeneous mass data collected over 
many years. The assistant system is built on top of the platform and utilizes analytical methods which 
automatically generate an early warning or even recommend how to handle a specific situation.
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The development team needs to have expertise 
in the areas of data mining, user-centric design, 
software technologies and architectures, produc-
tion management, as well as automation technolo-
gy. In particular, we see the need for three areas of 
development or activities: user analysis, data ana-
lysis and big data architecture and infrastructure 
planning. The three areas can certainly be mapped 
back to the CRISP-DM phases, but require different 
levels of detailed involvement. User analysis can 
be mapped on business understanding but requires 
expertise in user-centred development and control 
system design. Data analysis can be mapped on data 
understanding, data exploration, data modelling and 
evaluation and is the actual domain of data scientists 
and data mining experts. Architecture and infra-
structure planning addresses the deployment, but 
goes far beyond the submission of a final report; it 
deals with building and information systems that are 
able to utilize data mining models under the (soft) 
real-time requirements of process control systems. 
The different activity areas are strongly interdepen-
dent (e.g. a chosen visualisation is not feasible if 
the corresponding modelling fails, or architectural 
requirements like response time define constraints 
regarding possible modelling types); there is also 
an experimental character of the data analysis to be 
noted. The feasibility for data mining or other ana-
lytics approaches is limited by the historical data 
collected. In many cases, the data does not contain 

the necessary information for producing the desired 
results. This is also a reason why an agile develop-
ment approach is better suited than a conventional 
one. In coordination with end users, the development 
team has to be able to adjust the direction of a project 
when environmental conditions change. Especially 
the creation of early proofs-of-concept is useful in 
order to identify potential failures as soon as possible.

Figure 3 shows the process that has been developed 
during the project to identify potential application 
scenarios, capture functional and non-functional 
requirements and to develop both suitable data ana-
lytics and user interfaces. The process is carried 
out in 6 steps, where steps 4 und 5 are executed in 
parallel and with close feedback loops between the 
corresponding teams.

1 |  �Scenario Identification: Here a specifically deve-
loped ‘Scenario Canvas’, (cf. [7] for a detailed 
description), was used in end-customer work-
shops to capture the specific plant situation along 
with consequences, possible intervention or pre-
vention strategies and the available data – both 
historical and online. This information helped 
to rule out irrelevant scenarios (e.g. insufficient 
data available, consequences not critical, or no 
prevention/intervention possible from operator 
side). Furthermore, the current processes in the 
operator rooms have been described with the 
help of business process models and the basis of 
understanding the current situation. Based on 

FIGURE 2: �A Claus unit of a major German oil refinery, which is used for the recovery of sulfur from hydrogen 
sulfide, is used as a case study in the FEE project.
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the learning collected in the ‘Scenario Canvas’ a 
short description is created of the scenario with 
the relevant actors (operators, shift-leader, process 
engineers) and the understanding of the desired 
situation.

2 |  �User Stories and Paper Prototype: Based on the 
desired situation an interdisciplinary team (HMI 
experts, data analysts, software architects) in a 
focus group develop both user stories and first 
paper prototypes of future user interfaces. The 
interdisciplinary setup of the team helps when 
considering the potentials and constraints of the 
different areas.

3 |  �Analytics Workflow and Non-Functional require-
ments: Based on the previous results (user stories 
and paper prototypes), the same interdisciplinary 
team starts to define a high level description of 
the required data analytics and the non-functio-
nal requirements arising from the scenario. In 
this step, big data forces like data volume, variety, 
velocity, required availability and consistency are 
discussed extensively.

4 |  �Proof of Concept (PoC) Data Analytics: Develop 
first models based on the historical data in order 

to demonstrate the feasibility of the intended sup-
port functionality

5 |  �Refined Mock-Ups: Refine the paper-prototypes 
into mock-ups appropriate for collecting early 
feedback from end-users

6 |  �Integration and Implementation: In this step, the 
PoC models have to be refined and improved to 
meet operational requirements, and integration 
with the automation system and the user inter-
faces has to be implemented. This phase has not 
yet been addressed in the project and remains 
future work.

Data Integration and Preprocessing
The importance of data integration and appropriate 
preprocessing for a successful implementation of data 
driven OSS can hardly be overestimated. In this sec-
tion, the integration requirements for handling the 
plant data are described. It covers the necessary steps 
for preparing the data and implications for the chosen 
system architecture. Overall, techniques for structured 
data have been widely applied in the data mining com-
munity. Data preparation is a phase in the CRISP-DM 
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FIGURE 3: �Activities and artifacts in the development of the application scenarios of the FEE project.
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standard data mining process model [5] that is regarded 
as one of the key factors for good model quality.

The most important long term data store of a plant is 
called process historian or plant information manage-
ment system (PIMS). Modern PIMS are able to store 
ten thousands of signals captured over many years 
[8]. It is almost certain that in a large plant with many 
thousands of sensors, some of the sensors will deli-
ver wrong signals. As a consequence, some signals 
might not be suitable for the intended analysis [10]. 
Modern smart instruments implement sophisticated 
self-diagnosis mechanisms telling about the quality 
and reliability of the measured signal. Typical pre-
processing problems that a data analyst faces inclu-
de outliers [11], frozen signals (signal stops moving, 
typically the current value will stay at the last known 
good value in case of an error), noise (e.g. electroma-
gnetic interference), or an unsuitable sampling rate 
(too high or too low).

Many analytical algorithms are based on very 
strong assumptions regarding the cleanness and vali-
dity of the data. A single outlier can lead to useless 
and misleading results of complex calculations. It is 
therefore very important to have an adequate prepro-

cessing in place to either remove or at least identify 
intervals with measurement problems. Data reconci-
liation [9] uses mathematical models of the process to 
discover and remove errors in the measured signals.

In addition to the metric data outlined above, there 
are usually also semi-structured and unstructured 
data available, e.g. alarm logs and shift books. Typi-
cally, unstructured data is organized into multiple 
documents containing free text, for which relevant 
information needs to be extracted [12]. The prepro-
cessing of unstructured data starts with a tokeniza-
tion step. For each document, the text is cleaned by 
removing non-word characters, e.g. punctuation and 
special characters, and then split at each whitespace 
to create a set of words for the document. The union 
of all words in the document collection yields the 
dictionary. One of the most commonly used repre-
sentations for a document is the bag-of-words model. 
A document is represented by a multiset of words, 
i.e. a set of words with corresponding frequencies. 
Since the order of the words is ignored, this type of 
model is not able to capture the relation between 
words, e.g. the co-occurrence of words in a sentence. 
Here, alternative representations that consider, for 
example, subsequent word pairs (bigrams) or longer 
word sequences can be used for capturing interdepen-
dencies. For further details and a detailed description 
of data integration and preprocessing methods in the 
context of big data, we refer to [13].

Data Exploration
The generation and validation of models to implement 
the desired support functions is a complicated task for a 
data analyst because usually different approaches need 
to be explored and validated. Gaining a strong grasp of 
the available data is crucial for an analyst to focus on 
the data that are of highest relevance to the situation 
at hand. Because of the amount of available data it is 
important to focus on the relevant parts and to give 
the operator a compact overview, cf. [14]. Supporting 
this task promises a faster development of data-driven 
models and thus increases quality and availability 
aspects of a plant.

A first step in the data understanding phase of the 
CRISP-DM model [5] is to calculate basic statistical 
key figures. This includes distribution information 
such as extreme values, mean and variance, but also 
information about the data types (metric, categorical, 
text) and quality (number of missing values). Those 
figures should be calculated once for the complete time 
frame but also for windows of finer granularity, like 
days or hours.

A further method for data exploration is the cal-
culation of cross-correlations between the signals 
of sensors. These can give an understanding of how 
different parts of a plant interact and how situational 

FIGURE 4: �Example of a plant context graph, e.g. for 
browsing & search.
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changes propagate through the plant. A heat map can 
visualize the correlation values between all sensor 
signals (i.e. all tags of a pair of assets), whereas line 
plots are useful to show the effect a time shift has on 
the correlation between two signals. It is important 
to remember that the correlation indicates similar 
behaviour for the observed data but does not prove 
causality.

Another data exploration tool is provided by a hier-
archical visualization model of the assets. The requi-
red information comes from the piping and informa-
tion diagrams (P&ID). Figure 4 shows an abstracted 
P&ID graph; in this example, we can observe the 
hierarchical relations between the individual entities 
(modelled as nodes in the graph), and thus obtain an 
indication about the structural relations between the 
assets, which can be exploited for browsing, filtering, 
and providing details on demand according to the 
“Visual Information Seeking Mantra” [15].

To allow for a fast exploration of the data, one has to 
focus on the relevant aspects. To this end, additional 
filter options are necessary. Those filters have to be 
easy to use but at the same time powerful enough to 
give the user enough leeway to explore the data unre-
stricted. Therefore, semi-automatic methods that com-
bine automatic network analysis methods for detecting 
exceptional patterns [16] with interactive exploratory 
approaches provide powerful tools for inspecting the 
network-based exploration tool. Using such methods 
we can, for example, detect strongly related (linked) 
groups that exhibit exceptional characteristics, e.g. 
relating to a temporal burst of alarms in a certain 
timeframe. In addition, customized views based on a 
network-based clustering of the assets can be provided.

3. BIG DATA ARCHITECTURE
Handling the large amounts of historical plant data 
requires a special IT infrastructure, e.g. based on 
Map/Reduce [17]. From a technical point of view, in 
most application cases of the FEE project, the data 
analysis can be divided into two parts: 1) training 
models with suitable algorithms (data modelling in 
CRISP-DM [5]), and 2) applying the models during 
operation of the plants or during deployment in order 
to fulfil the actual assistant function, (e.g. ‘make pre-
dictions’). As part of the model training, the usually 
extensive historical data have to be analyzed as they 
are stored in the IT-system of the process plant (data-
at-rest). There will be no direct interaction with the 
automation system during this phase and response 
time plays only a minor role. However, when the 
model is applied during operation only a small subset 
of data is required to calculate the input feature of 
the model and this will be available as a stream of 
data from the production process. Here the analytics 
process is typically subject to soft real-time require-
ments, i.e. “the shorter the response times the better”. 
The Lambda Architecture [18] offers a layout for a 
robust system that is designed to prepare batch views 
of stored data (batch layer) and handling requests on 
those views as well as on rapidly arriving new data 
(speed layer). The separation of these layers matches 
the described phases of model training and model 
application very well. The analysis of historical data-
at-rest takes place mainly in the batch layer suited for 
the execution of long-running processes. The models 
trained in the batch layer, such as classifiers, are 
applied to the speed layer with help of streaming 
technologies. Other outcomes of the batch layer, such 
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FIGURE 5: Standardized pressure difference measurement over a period of one month
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as search indexes, make up the basis of the serving 
layer and all interactive functions.

While the basic structure of the adjusted Lambda 
Architecture stays the same in different realizations 
of assistant systems, the requirements for each system 
must be considered. This way the design for each 
concrete case can be defined, e.g. by making the spe-
cific technology choices or by sizing the execution 
platform. Design tools include the so-called Quality 
Attribute Scenarios [19] which enable the communi-
cation of characteristics for quality attributes (such 
as performance, availability, security, adaptability) 
especially to stakeholders without IT or software 
background.

4. USE CASES FOR BIG DATA ANALYTICS
There are many actions in production that would 
benefit from better analysis. Concerning the most 
promising ones in the process industries we present 
two approaches for big data analytics in this area 
and possible outcomes. The single use cases can be 
implemented separately, but can provide a larger 
benefit if they are coupled.

4.1 Dynamic model-based predictive alarming
A unit of a major German oil refinery is considered as a 
case study. The unit under study consists of a Claus 
process, which is a gas desulfurizing process, and a 
Shell Claus off-gas treating (SCOT) process, which is 
connected downstream of the Claus process to remove 
sulfur compounds from Claus tail gas. An example 
of an abnormal operating situation is foaming in the 

SCOT process. The foaming occurs in the last stage of 
the SCOT process in which a solvent loaded with H2S 
is regenerated. The cause of foaming is considered to 
be the accumulation of impurities and rust particles in 
the pipes. The formation of foam in a column causes it 
to overflow and eventually results in plant downtime. 
To avoid this undesirable consequence of foaming, an 
anti-foaming agent is introduced manually into the 
unit when peaks are observed in the pressure diffe-
rence measurement in the column in which foaming 
takes place. Figure 5 depicts the standardized pressure 
difference measurement over a period of one month.

In the current situation, operators have to observe 
the relevant process values and react under time-
pressure by informing their colleagues in the field 
to take appropriate countermeasures. An early war-
ning giving the operators time to react without time-
pressure is highly desired. However, a conventional 
alarm definition based on thresholds of single process 
values fails to provide this early warning in a reliable 
and useful manner.

Chosen methods for analytics PoC
The prediction of such re-occurring critical situations 
may be formulated as a system identification task which 
can be performed by a variety of methods, see [20] for 
an extended discussion.

Continuous processes in production plants are typi-
cally operated at fixed operating points, which allows 
the application of linear dynamic methods for model-
ling and control, as demonstrated by the numerous suc-
cessful applications of linear model predictive control 
in the process industry [21].
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A possible way to detect foaming in good time is by 
predicting indicative process variables over a chosen 
prediction horizon and assessing these. The task of 
prediction may require making certain assumptions 
about process inputs over the prediction horizon. Fur-
thermore, online what-if simulation could be benefi-
cial and will require the modelling of multivariate 
input-output relationships of process systems. For 
this purpose, multi-input multi-output (MIMO) line-
ar dynamic models can be identified locally around 
different operating points. When statistical assump-
tions are made, model estimation goes along with con-
fidence information for the prediction to assess its 
trustworthiness. The identification of MIMO models 
from plant operational data will require the develop-
ment of multivariate techniques for searching data 
segments with high information content with respect 
to system identification.

First results
Several linear system identification methods such as 
prediction error methods (PEM) and subspace identifi-
cation methods (SIM) have been applied and assessed 
for modelling the pressure difference in the foaming 
column of the SCOT unit. Initial simulation results 
are promising. A total of 29 process variables were 
chosen as model inputs by inspecting the P&ID of the 

unit. The data set was preprocessed by reconstructing 
missing data points and standardizing it. Elastic net 
regularization was used to select 7 inputs and a total 
of 26 terms out of a chosen candidate set of 150 terms. 
The resulting sparse ARX model is 5th order. Figure 6 
shows the model simulation on the identification data 
set (samples 1 to 3.25x104) and on the validation data 
set (remaining time series).

Future work will focus on making multi-step ahead 
predictions for giving early warning and developing 
additional methods for online process analysis for ope-
rator support.

4.2 Anomaly detection

Problem statement
Monitoring of the production process is one of the 
main tasks of operators. However, the large number 
of sensor values in chemical plants leads to a high 
workload if operators are supposed to monitor all 
sensor values. As an example, an industrial petro-
chemical plant is considered with about 1000 analog 
sensors providing numerical data, semi-structured 
categorical data such as alarms, and textual data such 
as operator logs. The plant operates continuously 24/7 
and changes the load about twice a week.
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FIGURE 7: Example time series with anomaly (red box) and load change (e.g. at t = 0.1)
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Often, the retrospective analysis of an event with 
major economic impact reveals that operators or pro-
cess engineers would have been able to detect the 
problem earlier and to develop appropriate interven-
tion strategies, if they had known which data and 
especially signals to focus on in monitoring and dia-
gnostics. Consequently, an anomaly detection system 
is desirable. It should provide the users with early 
information if a process shows unusual behaviour 
and points to the specific signals which manifest the 
unusual process behaviour.

Anomalies are usually referred to as data points or 
sequences that differ significantly from data acqui-
red under normal operating conditions [22]. For that 
purpose, a nominal operating condition model is ext-
racted from historical data. An alarm will be set off if 
the current process deviates from normal behaviour. 
Figure 7 shows an example for anomalous behaviour 
of the butadiene plant (t = 0.75… 0.9). Only one time 
series is shown for reasons of clarity, but this ano-
maly can actually be observed in various signals in 
varying significance. Furthermore, Figure 7 demons-
trates the behavior during a load change (e.g. t = 0.1), 
as well as the development of anomalous behaviour 
(t = 0.5…0.7). Ideally the detection method would 
already recognize the growing anomaly in order to 
provide the operator with time to think, plan and 
react before the anomaly occurs.

Chosen methods for analytics PoC
Anomaly detection has been of scientific interest 
throughout the past decade [23]. It can be described 
as a two-class-classification problem with data for 
only one class being available. Moreover particu-
larly in complex systems not all possible anomalies 
might be known, or an anomaly will occur just once 
as plant authorities will take actions to prevent its 
repeated occurrence. Therefore an anomaly detection 
algorithm looks for data points or sequences which 
differ significantly from the normal behaviour of 
the system. Anomaly detection typically just uses 
numerical data but can also be enhanced by using 
non-metric data and asset information.

A broad variety of algorithms have been propo-
sed to detect anomalous behaviour. For time series 
anomaly detection it is common practice to analy-
ze sub-sequences, and where necessary time series 
transformations are used. The features represent the 
context rather than just a single observation and are a 
more sophisticated way of analyzing the behaviour of 
the system. Most of these methods use density-based 
descriptions of normal behaviour and analyze the 
query data by calculating the distance to the k-th 
nearest neighbour. Therefore it is assumed that under 
normal operating conditions the data points will form 
dense clusters, whereas in the case of an anomaly 
the data points will be located in regions of smaller 
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density. In most applications, Euclidian distances are 
used as a distance measure. Since a complex indus-
trial system usually has a large number of sensors, 
these calculations become computationally expen-
sive while the accuracy decreases with an increa-
sing number of variables [24]. As a consequence, the 

data is often projected to a subspace assuming that 
the anomaly can still be detected therein. The most 
commonly used method for this purpose is principal 
component analysis (PCA). Other approaches for ano-
maly detection are also available but are not as fle-
xible as the nearest neighbour method, which works 
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on original time series as well as feature vectors or 
subspace projections. For that reason, this approach 
was chosen for first tests that are supposed to provide 
further information on both the influence of different 
transformations or features and the feasibility of the 
anomaly detection for the available data.

First results
In order to gain experience, the above mentioned 
nearest neighbour method was implemented and tested 
on the data of the butadiene plant. At first, training data 
containing nominal operation behaviour was segmen-
ted to provide nominal operation patterns. Secondly, 
query data segments were compared to these patterns 
by computing the Euclidian distance. The distances 
can be regarded as anomaly scores.

Due to the flexibility of this approach the influence 
of time series representations and preprocessing could 
be investigated. Anomalous behaviour could be iden-
tified using either the original time series, piecewise 
aggregate approximation [25], or PCA scores as input 
to the nearest neighbour algorithm. Figure 8 illustrates 
anomaly scores for the same time window as used in 
Figure 7. At first, 13 variables were used that had been 
chosen by an asset expert. Since anomaly detection 
is supposed to supervise the process without a priori 
knowledge, in a second step 227 variables were used 
for the whole column . The results could be reproduced 
with dimension reduction by PCA but led to less dif-
ference between anomaly scores for the anomaly and 
for normal operation.

However there are two main drawbacks that need 
to be dealt with in the future: The method behind 
the results in Figure 8 is computationally expensive 
because of the distances that have to be computed in 
high-dimensional space for finding the k-th nearest 
neighbour. The computation time has to be improved 
by magnitudes for online analysis, thus appropriate 
big data techniques should be used. Furthermore the 
method leads to several false positives caused by load 
changes in the plant so that better and more meaningful 
features are required.

5. CONCLUSIONS & OUTLOOK
In the first phase of the FEE project, the team has spent 
a significant amount of time analyzing in detail the 
problems of operators in industrial control rooms. This 
has led to several use cases. For both ‚predictive alar-
ming‘ and ‚anomaly detection‘ suitable methods have 
been identified and first results presented.

A future use case that poses different challenges and 
architectural requirements is the search for similar 
situations in the historical data. Such a functionali-
ty can support operators or process engineers with 
the retrospective or online diagnosis of the process. 

A possible approach is to look for signals that behave 
like a suspicious one in order to localize the problem. 
A major problem in diagnostics tasks is the large num-
bers of signals and alarms. A further interesting ques-
tion is whether a situation similar to the current plant 
situation has occurred in the past. Then, the process 
manager or the operator can investigate differences in 
the further development of the process and differences 
to the current situation. Here we want to investigate the 
potential of search on time-series data. The search for 
similarities in time series is a known problem. In the 
setup phase, the feature space and similarity measu-
res have to be defined. Afterwards the data has to be 
indexed accordingly and updated continuously with 
new data. Although the similarity of situations can be 
quite obvious for humans, who can easily focus on the 
relevant parts of the signals, the behaviour of similar 
signals on the time axis can differ a lot (e.g. a ramp after 
2 hours instead of 3 hours). In these cases, advanced 
techniques like dynamic time warping (DTW) can be 
used to make the signals comparable again.

The search can also be enhanced by using non-
metric data and asset information. This could include 
the occurrence and patterns of alarms as well as leve-
raging an ontology for selecting appropriate signals 
(e.g. all temperature signals in unit x and its adjacent 
units), also relying on hierarchical concepts and abs-
tractions. Here, methods relying on network construc-
tion and analysis described in the data exploration 
use case provide promising results. Specifically, the 
network representation enables effective data integra-
tion and annotation, abstracting metric and unstruc-
tured data into a common representation. The setting 
of this potential use case again matches the Lambda 
Architecture [18] (cf. Section 2) with the batch, and 
speed layer, and serving layer. Compared with other 
FEE use cases, the integration of speed and serving 
layer is of particular importance. Also, interesting 
areas of future research consider the integration of 
further information about processes, for example con-
cerning interactions by email or behavioural (sensor) 
data, or additional information from unstructured 
and semi-structured data, by adapting and integra-
ting further advanced approaches for information 
extraction, e.g. [26].
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The very close interaction with industrial end users 
enabled by the FEE project ensures that the most rele-
vant problems are tackled and that all required indus-
trial process data and information are available. In 
future work packages, the developed solutions will be 
demonstrated together with the industrial partners.
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